1.代码思路
1)对矩阵进行合法性检查:矩阵必须为方阵
2)计算矩阵行列式的值(Determinant函数)
3)只有满秩矩阵才有逆矩阵,因此如果行列式的值为0(在代码中以绝对值小于1E-6做判断),则终止函数,报出异常
4)求出伴随矩阵(AdjointMatrix函数)
5)逆矩阵各元素即其伴随矩阵各元素除以矩阵行列式的商
2.函数代码
(注:本段代码只实现了一个思路,可能并不是该问题的最优解)
////// 求矩阵的逆矩阵/// /// ///public static double[][] InverseMatrix(double[][] matrix){ //matrix必须为非空 if (matrix == null || matrix.Length == 0) { return new double[][] { }; } //matrix 必须为方阵 int len = matrix.Length; for (int counter = 0; counter < matrix.Length; counter++) { if (matrix[counter].Length != len) { throw new Exception("matrix 必须为方阵"); } } //计算矩阵行列式的值 double dDeterminant = Determinant(matrix); if (Math.Abs(dDeterminant) <= 1E-6) { throw new Exception("矩阵不可逆"); } //制作一个伴随矩阵大小的矩阵 double[][] result = AdjointMatrix(matrix); //矩阵的每项除以矩阵行列式的值,即为所求 for (int i = 0; i < matrix.Length; i++) { for (int j = 0; j < matrix.Length; j++) { result[i][j] = result[i][j] / dDeterminant; } } return result;}/// /// 递归计算行列式的值/// /// 矩阵///public static double Determinant(double[][] matrix){ //二阶及以下行列式直接计算 if (matrix.Length == 0) return 0; else if (matrix.Length == 1) return matrix[0][0]; else if (matrix.Length == 2) { return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]; } //对第一行使用“加边法”递归计算行列式的值 double dSum = 0, dSign = 1; for (int i = 0; i < matrix.Length; i++) { double[][] matrixTemp = new double[matrix.Length - 1][]; for (int count = 0; count < matrix.Length - 1; count++) { matrixTemp[count] = new double[matrix.Length - 1]; } for (int j = 0; j < matrixTemp.Length; j++) { for (int k = 0; k < matrixTemp.Length; k++) { matrixTemp[j][k] = matrix[j + 1][k >= i ? k + 1 : k]; } } dSum += (matrix[0][i] * dSign * Determinant(matrixTemp)); dSign = dSign * -1; } return dSum;}/// /// 计算方阵的伴随矩阵/// /// 方阵///public static double[][] AdjointMatrix(double [][] matrix){ //制作一个伴随矩阵大小的矩阵 double[][] result = new double[matrix.Length][]; for (int i = 0; i < result.Length; i++) { result[i] = new double[matrix[i].Length]; } //生成伴随矩阵 for (int i = 0; i < result.Length; i++) { for (int j = 0; j < result.Length; j++) { //存储代数余子式的矩阵(行、列数都比原矩阵少1) double[][] temp = new double[result.Length - 1][]; for (int k = 0; k < result.Length - 1; k++) { temp[k] = new double[result[k].Length - 1]; } //生成代数余子式 for (int x = 0; x < temp.Length; x++) { for (int y = 0; y < temp.Length; y++) { temp[x][y] = matrix[x < i ? x : x + 1][y < j ? y : y + 1]; } } //Console.WriteLine("代数余子式:"); //PrintMatrix(temp); result[j][i] = ((i + j) % 2 == 0 ? 1 : -1) * Determinant(temp); } } //Console.WriteLine("伴随矩阵:"); //PrintMatrix(result); return result;}/// /// 打印矩阵/// /// 待打印矩阵private static void PrintMatrix(double[][] matrix, string title = ""){ //1.标题值为空则不显示标题 if (!String.IsNullOrWhiteSpace(title)) { Console.WriteLine(title); } //2.打印矩阵 for (int i = 0; i < matrix.Length; i++) { for (int j = 0; j < matrix[i].Length; j++) { Console.Write(matrix[i][j] + "\t"); //注意不能写为:Console.Write(matrix[i][j] + '\t'); } Console.WriteLine(); } //3.空行 Console.WriteLine();}
3.Main函数调用
static void Main(string[] args){ double[][] matrix = new double[][] { new double[] { 1, 2, 3 }, new double[] { 2, 2, 1 }, new double[] { 3, 4, 3 } }; PrintMatrix(matrix, "原矩阵"); PrintMatrix(AdjointMatrix(matrix), "伴随矩阵"); Console.WriteLine("行列式的值为:" + Determinant(matrix) + '\n'); PrintMatrix(InverseMatrix(matrix), "逆矩阵"); Console.ReadLine();}
4.执行结果